文学城论坛
+A-

有没有好办法?

cma 2012-01-25 21:15:23 ( reads)

2006 colored beads are placed on a necklace (circular ring) such that each bead is adjacent to two others. The beads are labeled a_0a_1\ldotsa_{2005} around the circle in order. Two beads a_i and a_j, where i and j are non-negative integers, satisfy a_i = a_j if and only if the color of a_i is the same as the color of a_j. Given that there exists no non-negative integer m < 2006 and positive integer n < 1003 such that a_m = a_{m-n} = a_{m+n}, where all subscripts are taken \pmod{2006}, find the minimum number of different colors of beads on the necklace.

先在此谢过。

跟帖(2)

柯西

2012-02-08 23:01:04

17, i.e. the smallest factor of 2006 (but > 2)

jinjing

2012-02-10 14:13:29

???,2134=2*11*97=2134, 依您的理论,11就可以了.那