很不错!我来证另一边
不妨设 a>=b>=c, 设p=ab, 则p>=4
(1/sqrt(1+a) + 1/sqrt(1+b))^2
= [(sqrt(1+a)+sqrt(1+b))/(sqrt(1+a)*sqrt(1+b))]^2
= ((2+a+b+2sqrt(1+a+b+ab)) / (1+a+b+ab)
= (1+a+b+ab + 1-ab + 2sqrt(1+a+b+ab)) / (1+a+b+ab)
= 1 + (1-ab)/(1+a+b+ab) + 2/sqrt(1+a+b+ab)
* 设 t = 1/sqrt(1+a+b+ab)
= 1 + (1-ab)*t^2 + 2t
= (1-p)*t^2 + 2t + 1
= -(p-1)*(t-1/(p-1))^2 + p/(p-1)
<= p/(p-1)
因此 1/sqrt(1+a) + 1/sqrt(1+b) <= sqrt(p/(p-1))
故 m = 1/sqrt(1+a) + 1/sqrt(1+b) + 1/sqrt(1+c)
<= sqrt(p/(p-1)) + 1/sqrt(1+c)
= sqrt(1/(1-1/p)) + 1/sqrt(1+8/p)
再令w=1/p, 则 0<w<=1/4
m <= sqrt(1/1-w) + sqrt(1/(1+8w))
m^2 <= (sqrt(1/1-w) + sqrt(1/(1+8w))^2
<= 2(1/(1-w) + 1/(1+8w))
= 2(2+14w-16w^2-7w+16w^2)/(1+7w-8w^2)
= 2*2 + 2(16w^2-7w)/(1+7w-8w^2)
= 4 + 2*16w(w-7/16)/((1+8w)(1-w))
< 4 //注意 0<w<=1/4, w-7/16<0 1-w>0
因此 m < 2
wxcfan123
2024-03-15 05:36:09妙!